Newton comparte con Leibniz el crédito por el desarrollo del cálculo integral y diferencial, que utilizó para formular sus leyes de la física. También contribuyó en otras áreas de la matemática, desarrollando el teorema del binomio y las fórmulas de Newton-Cotes.
Entre sus hallazgos científicos se encuentran el descubrimiento de que el espectro de color que se observa cuando la luz blanca pasa por un prisma es inherente a esa luz, en lugar de provenir del prisma (como había sido postulado por Roger Bacon en el siglo XIII); su argumentación sobre la posibilidad de que la luz estuviera compuesta por partículas; su desarrollo de una ley de convección térmica, que describe la tasa de enfriamiento de los objetos expuestos al aire; sus estudios sobre la velocidad del sonido en el aire; y su propuesta de una teoría sobre el origen de las estrellas. Fue también un pionero de la mecánica de fluidos, estableciendo una ley sobre la viscosidad.
Newton fue el primero en demostrar que las leyes naturales que gobiernan el movimiento en la Tierra y las que gobiernan el movimiento de los cuerpos celestes son las mismas. Es, a menudo, calificado como el científico más grande de todos los tiempos, y su obra como la culminación de la revolución científica. El matemático y físico matemático Joseph Louis Lagrange (1736–1813), dijo que "Newton fue el más grande genio que ha existido y también el más afortunado dado que sólo se puede encontrar una vez un sistema que rija el mundo."
Primeras contribuciones
Desde finales de 1664 trabajó intensamente en diferentes problemas matemáticos. Abordó entonces el teorema del binomio, a partir de los trabajos de John Wallis, y desarrolló un método propio denominado cálculo de fluxiones. Poco después regresó a la granja familiar a causa de una epidemia de peste bubónica.
Retirado con su familia durante los años 1665 y 1666, conoció un período muy intenso de descubrimientos, entre los que destaca la ley del inverso del cuadrado de la gravitación, su desarrollo de las bases de la mecánica clásica, la formalización del método de fluxiones y la generalización del teorema del binomio, poniendo además de manifiesto la naturaleza física de los colores. Sin embargo, guardaría silencio durante mucho tiempo sobre sus descubrimientos ante el temor a las críticas y al robo de sus ideas. En 1667 reanudó sus estudios en Cambridge.
leyes de la gravitacion universal
donde F es la fuerza, G es una constante que determina la intensidad de la fuerza y que sería medida años más tarde por Henry Cavendish en su célebre experimento de la balanza de torsión, m1 y m2 son las masas de dos cuerpos que se atraen entre sí y r es la distancia entre ambos cuerpos, siendo
La ley de gravitación universal nació en 1685 como culminación de una serie de estudios y trabajos iniciados mucho antes. La primera referencia escrita que tenemos de la idea de la atracción universal es de 1666, en el libro Micrographia, de Robert Hooke. En 1679 Robert Hooke introdujo a Newton en el problema de analizar una trayectoria curva. Cuando Hooke se convirtió en secretario de la Royal Society quiso entablar una correspondencia filosófica con Newton. En su primera carta planteó dos cuestiones que interesarían profundamente a Newton. Hasta entonces científicos y filósofos como Descartes y Huygens analizaban el movimiento curvilíneo con la fuerza centrífuga. Hooke, sin embargo, proponía "componer los movimientos celestes de los planetas a partir de un movimiento rectilíneo a lo largo de la tangente y un movimiento atractivo, hacia el cuerpo central." Sugiere que la fuerza centrípeta hacia el Sol varía en razón inversa al cuadrado de las distancias. Newton contesta que él nunca había oído hablar de esta hipótesis.
En otra carta de Hooke, escribe: “Nos queda ahora por conocer las propiedades de una línea curva... tomándole a todas las distancias en proporción cuadrática inversa.” En otras palabras, Hooke deseaba saber cuál es la curva resultante de un objeto al que se le imprime una fuerza inversa al cuadrado de la distancia. Hooke termina esa carta diciendo: “No dudo que usted, con su excelente método, encontrará fácilmente cuál ha de ser esta curva.”
En 1684 Newton informó a su amigo Edmund Halley de que había resuelto el problema de la fuerza inversamente proporcional al cuadrado de la distancia. Newton redactó estos cálculos en el tratado De Motu y los desarrolló ampliamente en el libro Philosophiae naturalis principia mathematica. Aunque muchos astrónomos no utilizaban las leyes de Kepler, Newton intuyó su gran importancia y las engrandeció demostrándolas a partir de su ley de la gravitación universal.
Sin embargo, la gravitación universal es mucho más que una fuerza dirigida hacia el Sol. Es también un efecto de los planetas sobre el Sol y sobre todos los objetos del Universo. Newton intuyó fácilmente a partir de su tercera ley de la dinámica que si un objeto atrae a un segundo objeto, este segundo también atrae al primero con la misma fuerza. Newton se percató de que el movimiento de los cuerpos celestes no podía ser regular. Afirmó: “los planetas ni se mueven exactamente en elipses, ni giran dos veces según la misma órbita”. Para Newton, ferviente religioso, la estabilidad de las órbitas de los planetas implicaba reajustes continuos sobre sus trayectorias impuestas por el poder divino.