lunes, 28 de abril de 2014

Hertzsprung-Russell

El diagrama de hertzsprung-Russell (comúnmente abreviado como diagra,a H-R) muestra el resultado de numerosas observaciones sobre la relación existente entre lamagnitud absoluta de una estrella y tipo espectral.
Fue realizado en 1905 por el astrónomo Ejnar Hertzsprung y, de manera independiente, en 1913 por Henry Norris Russell. El diagrama de Hertzsprung mostraba la luminosidad de las estrellas en función de su color, mientras que el diagrama inicial de Russell mostraba la luminosidad en función del tipo espectral. Ambos diagramas son equivalentes.
El diagrama H-R se utiliza para diferenciar tipos de estrellas y para estudiar la evolución estelar. Un examen del diagrama muestra que las estrellas tienden a encontrarse agrupadas en regiones específicas del mismo. La predominante es la diagonal que va de la región superior izquierda (caliente y brillante) a la región inferior derecha (fría y menos brillante) y se denomina secuencia principal. En este grupo se encuentran las estrellas que extraen su energía de las reacciones termonucleares de fusión del hidrógeno en helio. En la esquina inferior izquierda se encuentran las enanas blancas, y por encima de la secuencia principal se encuentran las gigantes rojas y las supergigantes.
Una de las complicaciones de realizar un diagrama H-R es que la cantidad del eje vertical, la magnitud absoluta, no es observable directamente. La cantidad observada es la magnitud aparente en alguna banda, y para obtener una magnitud absoluta se necesita una distancia. Las distancias en astronomía son notablemente difíciles de obtener. En el caso de estrellas individuales relativamente cercanas el único método disponible es la paralaje. Pero en el caso de estrellas que se encuentren a aproximadamente la misma distancia, como cúmulos globulares o cúmulos abiertos, al poner en el eje vertical la magnitud aparente, se encuentra un diagrama reconocible. De la comparación de ese diagrama con un diagrama teórico, se puede deducir la distancia de un cúmulo y su edad.


lunes, 14 de abril de 2014

estrellas y variable cefeida


Estrellas del Universo

 Las estrellas son masas de gases, principalmente hidrógeno y helio, que emiten luz. Se encuentran a temperaturas muy elevadas. En su interior hay reacciones nucleares.
El Sol es una estrella. Vemos las estrellas, excepto el Sol, comocomo puntos luminosos muy pequeños, y sólo de noche, porque están a enormes distancias de nosotros. Parecen estar fijas, manteniendo la misma posición relativa en los cielos año tras año. En realidad, las estrellas están en rápido movimiento, pero a distancias tan grandes que sus cambios de posición se perciben sólo a través de los siglos.
El númeronúmero de estrellas observables a simple vista desdedesde la Tierra se ha calculado en unas 8.000, la mitad en cada hemisferio. Durante la noche no se pueden ver más de 2.000 al mismo tiempo, el resto quedan ocultas por la neblina atmosférica, sobre todo cerca del horizonte, y la pálida luz del cielo.
Los astrónomos han calculado que el númeronúmero de estrellas de la Vía Láctea, la galaxia a la que pertenece el Sol, asciende a cientos de miles de millones.
Como nuestro Sol, una estrella típica tiene una superficie visible llamada fotosfera, una atmósfera llena de gases calientes y, por encima de ellas, una corona más difusa y una corriente de partículas denominada viento estelar. Las áreas más frías de la fotosfera, que en el Sol se llaman manchas solares, probablemente se encuentren en otras estrellas comunes. Esto se ha podido comprobar en algunas grandes estrellas próximas mediante interferometría.
La estructura interna de las estrellas no se puede observar de formaforma directa, pero hay estudios que indican corrientes de convección y una densidad y una temperatura que aumentan hasta alcanzar el núcleo, donde tienen lugar reacciones termonucleares.
Las estrellas se componen sobre todo de hidrógeno y helio, con cantidad variable de elementos más pesados.

La estrella más cercana al Sistema Solar es Alfa Centauro

 Las estrellas individuales visibles en el cielo son las que están más cerca del Sistema Solar en la Vía Láctea. La más cercana es Proxima Centauri, uno de los componentes de la estrella triple Alpha Centauri, que está a unos 40 billones de kilómetros de la Tierra.
Se trata de un sistema de tres estrellas situado a 4,3 años luz de La Tierra, que sólo es visible desdedesde el hemisferio sur. La más cercana (Alpha Centauro A) tiene un brillo real igual al de nuestro Sol.
Alpha Centauri, también llamada Rigil Kentaurus, está en la constelación de Centauro. A simple vista, Alpha Centauri aparece como una única estrella con una magnitud aparente de -0,3, que la convierte en la tercera estrella más brillante del cielo sur.



Variables Cefeidas

 Este concepto engloba cualquier estrella cuyo brillo, visto desde la Tierra, no es constante. Pueden ser estrellas cuya emisión de luz fluctúa realmente - intrínsexas -, o estrellas cuya luz se ve interrumpida en su trayectoria hacia la Tierra, por otra estrella o una nube de polvo interestelar, llamadas variables extrínsecas.
Los cambios en la intensidad luminosa en las variables intrínsecas se deben a pulsaciones en el tamaño de la estrella (variables pulsantes) o a interacciones entre las componentes de una estrella doble. Algunas otras variables intrínsecas no encajan en ninguna de estas dos categorías.
El único tipo frecuente de variable extrínseca es la llamada "binaria eclipsante". Se trata de una estrella doble formada por dos estrellas próximas que pasan periódicamente una por delante de la otra. Algol es el ejemplo más conocido. Las binarias eclipsantes constituyen casi el 20% de las estrellas variables conocidas.
Las cefeidas son parejas orientadas de manera que, periódicamente, se eclipsan una a otra. Probablemente, los ejemplos más conocidos sean las variables cefeidas, cuyas pulsaciones periódicas indicacan su brillo, por lo que constituyen una importante referencia para la medición de distancias en el espacio.
Sus periodos de pulsación varían entre un día y unos cuatro meses, y sus variaciones de luminosidad pueden ser de entre un 50 y un 600% entre el máximo y el mínimo. Su nombre proviene de su prototipo o estrella representativa, Delta Cefei.
La relación entre su luminosidad media y el periodo de pulsación fue descubierta en 1912 por Henrietta S. Leavitt, y se conoce como relación periodo-luminosidad. Leavitt encontró que la luminosidad de una cefeida aumenta de manera proporcional a su periodo de pulsación.
Así, los astrónomos pueden determinar la luminosidad intrínseca de una cefeida simplemente midiendo el periodo de pulsación. La luminosidad aparente de una estrella en el cielo depende de su distancia a la Tierra; comparando esta luminosidad con su luminosidad intrínseca se puede determinar la distancia a la que se encuentra. De este modo, las cefeidas pueden utilizarse como indicadores de distancias tanto dentro como fuera de la Vía Láctea.
Existen dos tipos de cefeidas. Las más comunes se llaman cefeidas clásicas y las otras, más viejas y débiles, se conocen como estrellas W Virginis. Los dos tipos poseen distintas relaciones periodo-luminosidad.

lunes, 7 de abril de 2014

La luz

Casi todo nuestro conocimiento sobre el Universo procede del estudio de la luz emitida o reflejada por los objetos en el espacio. Excluyendo unas pocas excepciones, los astrónomos tienen que limitarse a detectar y analizar la débil luz procedente de objetos distantes para estudiar el cosmos. Este hecho es aún más impresionante cuando consideramos la inmensidad del Universo. Muchos de estos fotones de luz tienen que viajar billones de años luz para llegar a nuestros telescopios. La astronomía es una ciencia donde no podemos recolectar muestras o estudiar objetos en un laboratorio o entrar fisicamente en un sistema para estudiarle en detalle.
 
Afortunadamente, la luz lleva mucha información. Detectando y analizando la luz emitida por un objeto celeste, los astrónomos pueden calcular su distancia, movimiento, temperatura, densidad y composición química. Y dado que la luz procedente de un objeto tarda un tiempo en llegar hasta nosotros, podemos aprender cosas sobre la historia y evolución del Universo. Cuando recibimos luz de un objeto en el espacio, estamos de hecho haciendo un poco de "arqueología", examinando como se veían los objetos cuando esos fotones de luz fueron emitidos. Cuando los astrónomos estudian una galaxia que se encuentra a 200 millones de años luz, están examinando como era la galaxia hace 200 millones de años. Para ver como es ahora tendríamos que esperar otros 200 millones de años. Nosotros vemos el Sol según era hace 8.3 minutos.
 

Es natural pensar que la luz es la luz visible que detectan nuestros ojos. Sin embargo, este es sólo un tipo de luz. El rango entero de la luz, que incluye los colores del arcoiris que normalmente vemos, se llama espectro electromagnético. El espectro electromagnético incluye los rayos gamma, los rayos-x, el ultravioleta, el visible, el infrarrojo, las microondas y las ondas radio. La única diferencia entre estos diferentes tipos de radiación es su longitud de onda o su frecuencia. La longitud de onda se incrementa, y la frecuencia disminuye, de las rayos gamma a las onda radio.
 
Cada tipo de radiación (o luz) nos proporciona información única. Para obtener un conocimiento completo del Universo necesitamos observarlo con toda su luz, usando todo el rango del espectro electromagnético. El desarrollo tecnológico de los últimos 70 años ha permitido la fabricación de detectores electrónicos capaces de ver luz que es invisible a nuestros ojos. Además, ahora podemos poner telescopios en satélites, en aviones y en globos aerostáticos volando a gran altura, para evitar el efectro "oscurecedor" de la atmósfera de la Tierra. Esto ha producido una revolución en nuestro conocimiento del Univero.
 

agujeros negros

Los llamados agujeros negros son cuerpos con un campo gravitatorio muy grande, enorme.
No puede escapar ninguna radiación electromagnética ni luminosa, por eso son negros. Están rodeados de una "frontera" esférica que permite que la luz entre pero no salga.
Hay dos tipos de agujeros negros: cuerpos de alta densidad y poca masa concentrada en un espacio muy pequeño, y cuerpos de densidad baja pero masa muy grande, como pasa en los centros de las galaxias.
Si la masa de una estrella es más de dos veces la del Sol, llega un momento en su ciclo en que ni tan solo los neutrones pueden soportar la gravedad. La estrella se colapsa y se convierte en agujero negro.


El científico británico Stephen W. Hawking ha dedicado buena parte de su trabajo al estudio de los agujeros negros.
En su libro Historia del Tiempo explica cómo, en una estrella que se está colapsando, los conos luminosos que emite empiezan a curvarse en la superficie de la estrella.
Al hacerse pequeña, el campo gravitatorio crece y los conos de luz se inclinan cada vez más, hasta que ya no pueden escapar. La luz se apaga y se vuelve negro.
Si un componente de una estrella binaria se convierte en agujero negro, toma material de su compañera. Cuando el remolino se acerca al agujero, se mueve tan deprisa que emite rayos X. Así, aunque no se puede ver, se puede detectar por sus efectos sobre la materia cercana
Los agujeros negros no son eternos. Aunque no se escape ninguna radiación, parece que pueden hacerlo algunas partículas atómicas y subatómicas.
Alguien que observase la formación de un agujero negro desde el exterior, vería una estrella cada vez más pequeña y roja hasta que, finalmente, desaparecería. Su influencia gravitatoria, sin embargo, seguiría intacta.
Como en el Big Bang, en los agujeros negros se da una singularidad, es decir, las leyes físicas y la capacidad de predicción fallan. En consecuencia, ningún observador externo puede ver qué pasa dentro.
Las ecuaciones que intentan explicar una singularidad de los agujeros negros han de tener en cuenta el espacio y el tiempo. Las singularidades se situarán siempre en el pasado del observador (como el Big Bang) o en su futuro (como los colapsos gravitatorios). Esta hipótesis se conoce con el nombre de "censura cósmica".